5G和物联网将如何促进制造业发展
精确调用曲线可以是任何形状。因此,我在这里显示三种不同的形状。如果您不能自己决定是否需要更高的精度或更高的查全率,则可以使用F1分数。 F1分数 F1分数是准确性和召回率的平均值。但是平均公式却不同。常规平均公式在这里不起作用。看一下平均公式: (精确+召回)/ 2
即使精度为0或召回率为零,平均值仍为0.5。请记住,从我们之前的讨论中可以看出,精度为零是什么意思。我们总是可以预测y =1。因此,这应该是不可接受的。因为整个精确调用的想法是避免这种情况。公式F1得分是: 从精确度和召回率做出决策 精确度和召回率可以更好地了解算法的实际运行方式,尤其是在数据集高度偏斜的情况下。如果我们一直预测为0并获得99.5%的准确度,则召回率和精确度都将为0。因为没有真正的肯定。因此,您知道分类器不是一个好的分类器。当精度和查全率都很高时,表明该算法运行良好。 假设仅在高度自信的情况下,我们要预测y = 1。因为有时候这很重要。特别是当我们处理医疗数据时。假设我们正在检测某人是否患有心脏病或癌症。预测假阳性会给一个人的生活带来很多痛苦。提醒一下,通常,逻辑假设如果假设大于或等于0.5,则预测1;如果假设小于0.5,则预测0。
但是,当我们如上所述处理某些敏感情况时,我们想更确定自己的结果,如果假设≥0.7,我们将预测为1,如果假设<0.7,我们将预测为0。如果您想对结果更有信心,可以看到0.9之类的值。因此,您将90%地确定某人是否患有癌症。 现在,看看精度和召回率公式。真实肯定和错误肯定都会更低。因此,精度会更高。但另一方面,由于我们现在将预测更多的负面因素,因此,假阴性的可能性会更高。在这种情况下,召回率会更高。但是太多的假阴性也不好。如果某人确实患有癌症,或者某个账户有欺诈行为,但是我们告诉他们他们没有癌症,或者该账户没有欺诈行为,则可能导致灾难。 为了避免误报并提高召回率,我们需要将阈值更改为以下内容:
与以前的情况相反,我们将具有更高的召回率和更低的精度。
那么如何确定阈值呢?这将取决于您的要求。根据数据集,您必须决定是否需要更高的精度或更高的查全率。这是精度调用曲线: 从公式中可以看出,更高的精度是好的。因为更高的精度意味着更多的真实肯定。这意味着当我们说此交易是欺诈性的时,这是事实。 召回 回忆告诉我们,最初欺诈的所有交易中有多少被检测为欺诈。这意味着,如果我们告知银行适当的权力采取行动,那么在某笔交易实际上是欺诈的情况下。当我第一次阅读这些关于精确度和召回率的定义时,我花了一些时间才能真正理解它们之间的区别。我希望你能更快地得到它。如果没有,那就不用担心。你不是一个人。
召回率可以通过以下公式计算: (编辑:阜新站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |