完美无缺的特征工程
发布时间:2021-05-04 14:31:30 所属栏目:动态 来源:互联网
导读:如果说我从这次比赛中学到了什么,那就是特征工程是关键。简单来说,特征工程就是提取已有特征并不断添加新的特征,这可以是简单的将两列相乘。 在常用的机器学习方法中,神经网络可视为神奇的万能方案,据说神经网络可以从数据中学习任何东西。不过事实并非
如果说我从这次比赛中学到了什么,那就是“特征工程是关键”。简单来说,特征工程就是提取已有特征并不断添加新的特征,这可以是简单的将两列相乘。 在常用的机器学习方法中,神经网络可视为神奇的万能方案,据说神经网络可以从数据中学习任何东西。不过事实并非如此,大多数时候,一个模型要想通过数据学习的话,还需要人类从旁协助。 模型的优劣取决于数据的好坏,最好提供尽可能多的信息让原始数据有意义。对特征工程有帮助的两个观点:
特征工程是一门艺术。最重要的是要记住在进行特征工程时要考虑到数据环境。如果数据在现实生活中没有意义(例如将两个彼此没有关系的列相乘),很可能不会帮助模型更好地理解数据。 (编辑:阜新站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
站长推荐
热点阅读