加入收藏 | 设为首页 | 会员中心 | 我要投稿 阜新站长网 (https://www.0418zz.com.cn/)- 管理运维、AI硬件、数据集成、云备份、负载均衡!
当前位置: 首页 > 站长资讯 > 外闻 > 正文

5个优秀人工智能框架

发布时间:2021-01-31 17:19:03 所属栏目:外闻 来源:互联网
导读:人们常会提到,当今流行的深度学习模型是黑箱状态给它一个输入,模型就会决策出一个结果,其中的过程不为人所知。人们无法确切知道深度学习的决策依据以及结果是否可靠。近年来,越来越多的新研究面向构建可信的机器学习方法获得了成果。 然而最近发生的一件

人们常会提到,当今流行的深度学习模型是黑箱状态——给它一个输入,模型就会决策出一个结果,其中的过程不为人所知。人们无法确切知道深度学习的决策依据以及结果是否可靠。近年来,越来越多的新研究面向构建可信的机器学习方法获得了成果。

然而最近发生的一件事情告诉我们,很多时候被广泛应用的机器学习模型出问题的原因,压根就不会深入到算法层面。一点数据上的纰漏就会造成让人啼笑皆非的结果,而且最重要的是,这样的事比所谓「模型不可解释」造成的损失还要多出不少。

上个星期,美国宾夕法尼亚州历史保护官员和交通部门之间发送了大量邮件,其中内容混合了悲伤、困惑和沮丧的情绪。这一丑闻造成的影响仍在继续,在官方做出回应之前,我们还不能了解更多情况(尽管此事在当地考古学家之间已经人尽皆知了)。

一个价值 36.5 万美元的机器学习模型打了水漂。

发生甚么事了?

五年前,一些人带着创意拜访了宾州交通部,提出为史前考古遗址创建一个全州范围预测模型。最终,政府部门选择与一家大型工程公司合作,后者一直在考古调查方面花钱。
 

03 Tableau

曾经,为了丰富个人可视化技能、拓宽数据分析工具,也专门花了一段时间学习tableau的运用,这可能也是商业数据分析师的必备技能之一,不过个人目前也仅仅是偶尔用它画个图而已。tableau本身功能还是极其强大的,支持多种数据源读取、内置了类SQL的字段处理功能、提供了丰富的图表库,工作表->仪表板->故事,三者层层递进,对于大屏展示和快速完成数据分析可视化报表异常高效,尤为擅长周期性动态监管的数据指标类仪表板。灵活的数据加载、强大的数据转换、简单的字段拖拽即可出图,这些都保证了快速生成报表的可能性。附个人常用的tableau制图技巧:

  • Tableau可视化之多变折线图
  • Tableau可视化之多变条形图
  • Tableau可视化之多变地图
  • Tableau可视化之多变饼图
  • Tableau可视化之其他常用图表

04 网页在线工具

随着信息技术的不断成熟,其实很多数据可视化工作也逐渐搬移到线上轻量级完成,一些网页在线工具专门用于执行数据可视化,通过简单的灌入数据,一张张样式丰富的图表便很快呈现,而且大多都是零门槛易实现。这里仅列举两个:

  • 百度Echarts,这真算的上是百度的一个良心工具了,内置了大量的图表模板,仅需选定样式->更改数据即可轻松实现,而且支持交互。前面介绍的pyecharts其实就是百度Echarts的Python语言版
  • 词云在线网站。其实词云在线网站还是比较多的,这里不具体给出,可参考历史文章生成词云的几种方式查看。值得指出的是,本公众号的logo其实就是基于其中的一个网站生成的……

05 小结

数据可视化对于一名数据分析师而言确实很重要,好的可视化效果甚至称得上是安身立命装X加薪之本。然而,虽然可视化图表选择众多,但其实也不能过于追求标新立异,例如桑基图、瀑布图、南丁格尔图等,特定场景下用用可能效果感人,但绝大多数情况下,Simple is better than complex,折线图、条形图、饼图、散点图这四大基本图表类型仍然是朴实无华的首选。

(编辑:阜新站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读